1,213 research outputs found

    Downregulation of miR-92a Is Associated with Aggressive Breast Cancer Features and Increased Tumour Macrophage Infiltration

    Get PDF
    BACKGROUND: MicroRNAs are small non-coding RNAs involved in the regulation of gene expression on a posttranscriptional level. These regulatory RNAs have been implicated in numerous cellular processes and are further deregulated in different cancer types, including breast cancer. MiR-92a is part of the miR-17∼92 cluster, which was first reported to be linked to tumourigenesis. However, little is known about the expression of miR-92a in breast cancer and potential associations to tumour properties. The expression of miR-92a was therefore characterized in 144 invasive breast cancer samples using in situ hybridization and related to clinico-pathological data as well as to selected key properties of the tumour stroma, including the presence of macrophages (CD68) and cancer activated fibroblasts (alpha-SMA). METHODOLOGY/PRINCIPAL FINDINGS: To measure miR-92a levels, an in situ hybridisation protocol was developed and validated using cell lines and miR-92a inhibitors. The expression in the tumour samples was objectively evaluated using digital image analysis program subtracting background activities. We found that the miR-92a expression varied between tumours and was inversely correlated to tumour grade (r = -0.276, p = 0.003) and recurrence-free survival (p = 0.008) and provided independent prognostic information in multivariate Cox analysis (HR: 0.375, CI: 0.145-0.972, p = 0.043). MiR-92a was moreover inversely correlated to the number of infiltrating macrophages in the tumour stroma (r = -0.357, p<0.001), and downregulation of miR-92a promoted cell migration (p<0.01). CONCLUSIONS/SIGNIFICANCE: This study demonstrates that downregulation of miR-92a in breast cancer is linked to key epithelial and stromal properties as well as clinical outcome

    Pleiotropic antitumor effects of the pan-HDAC inhibitor ITF2357 against c-Myc-overexpressing human B-cell non-Hodgkin lymphomas,

    Get PDF
    Histone deacetylases (HDAC) extensively contribute to the c-Myc oncogenic program, pointing to their inhibition as an effective strategy against c-Myc-overexpressing cancers. We, thus, studied the therapeutic activity of the new-generation pan-HDAC inhibitor ITF2357 (Givinostat®) against c-Myc-overexpressing human B-cell non-Hodgkin lymphomas (B-NHLs). ITF2357 anti-proliferative and pro-apoptotic effects were analyzed in B-NHL cell lines with c-Myc translocations (Namalwa, Raji and DOHH-2), stabilizing mutations (Raji) or post-transcriptional alterations (SU-DHL-4) in relationship to c-Myc modulation. ITF2357 significantly delayed the in vitro growth of all B-NHL cell lines by inducing G1 cell-cycle arrest, eventually followed by cell death. These events correlated with the extent of c-Myc protein, but not mRNA, downregulation, indicating the involvement of post-transcriptional mechanisms. Accordingly, c-Myc-targeting microRNAs let-7a and miR-26a were induced in all treated lymphomas and the cap-dependent translation machinery components 4E-BP1, eIF4E and eIF4G, as well as their upstream regulators, Akt and PIM kinases, were inhibited in function of the cell sensitivity to ITF2357, and, in turn, c-Myc downregulation. In vivo, ITF2357 significantly hampered the growth of Namalwa and Raji xenografts in immunodeficient mice. Noteworthy, its combination with suboptimal cyclophosphamide, achieved complete remissions in most animals and equaled or even exceeded the activity of optimal cyclophosphamide. Collectively, our findings provide the rationale for testing the clinical advantages of adding ITF2357 to current therapies for the still very ominous c-Myc-overexpressing lymphomas. They equally provide the proof-of-concept for its clinical evaluation in rational combination with the promising inhibitors of B-cell receptor and PI3K/Akt/mTOR axis currently in the process of development

    Thromboembolic and bleeding risk in atrial fibrillation patients with chronic kidney disease: role of anticoagulation therapy

    Get PDF
    Atrial fibrillation (AF) and chronic kidney disease (CKD) are strictly related; several independent risk factors of AF are often frequent in CKD patients. AF prevalence is very common among these patients, ranging between 15% and 20% in advanced stages of CKD. Moreover, the results of several studies showed that AF patients with end stage renal disease (ESRD) have a higher mortality rate than patients with preserved renal function due to an increased incidence of stroke and an unpredicted elevated hemorrhagic risk. Direct oral anticoagulants (DOACs) are currently contraindicated in patients with ESRD and vitamin K antagonists (VKAs), remaining the only drugs allowed, although they show numerous critical issues such as a narrow therapeutic window, increased tissue calcification and an unfavorable risk/benefit ratio with low stroke prevention effect and augmented risk of major bleeding. The purpose of this review is to shed light on the applications of DOAC therapy in CKD patients, especially in ESRD patients

    po 344 mir 302b as adjuvant therapeutic tool to improve chemotherapy efficacy in human triple negative breast cancer

    Get PDF
    Introduction MiRNAs are a class of non-coding regulatory RNAs playing key roles in different biological processes including cancer. Triple-negative breast cancer (TNBC) accounts for 15%–20% of all breast cancer cases, with the worst outcome of all subtypes. For TNBC, still lacking targeted therapies, the only therapeutic option is chemotherapy. MiRNAs can modulate chemotherapy response by affecting DNA repair, cell cycle progression, apoptosis and also tumour microenvironment. Macrophages constitute a major component of the immune microenvironment of cancer and pro-tumour M2 macrophages have been associated with response to chemotherapeutic treatments. Here, we investigated the potential of miR-302b as a therapeutic tool to enhance cisplatin sensitivity in a TNBC mouse model and which pathways are involved in this mechanism both in tumour cells and microenvironment. Material and methods TNBC cells were injected into the mammary fat pad of female SCID mice and then treated with lipid nanoparticles containing miR-302b or cel-67 control, alone or in combination with cisplatin. Gene expression profile on collected tumours was performed by microarray. ITGA6 expression was assessed on tumour samples and siRNA tranfection was performed to evaluate the cisplatin response. Tumour sections were stained with anti-arginase 1 (M2 marker) to assess the number of M2 macrophages, and luciferase assay was used to evaluate Irf4 (M2 marker) as a direct target of miR-302b. Results and discussions Our results show that combination of miR-302b with cisplatin significantly impaired tumour growth in comparison with control cel-67. Gene expression profile identified ITGA6 as a regulatory target of miR-302b and cisplatin activity. Indeed, ITGA6 expression is down-modulated in mice treated with miR-302b plus cisplatin compared with control mice. Furthermore, TNBC cell lines increase their cisplatin sensitivity upon ITGA6 silencing. These data confirm the role of ITGA6 in cisplatin response mediated by miR-302b. Moreover, in xenograft tumours collected from the in vivo miR-302b delivery experiment, we observed a reduced number of M2 macrophages in the tumour microenvironment and gene expression confirm immune system modulation. Finally, luciferase assay validate Irf4, a key gene involved in M2 recruitment, as a direct target of miR-302b. Conclusion Our data demonstrate that miR-302b can be exploited as a new therapeutic tool to improve the response to chemotherapy, modulating ITGA6 expression in tumour cells and M2 recruitment in tumour microenvironment

    Identification and validation of oncologic miRNA biomarkers for Luminal A-like breast cancer

    Get PDF
    Introduction: Breast cancer is a common disease with distinct tumor subtypes phenotypically characterized by ER and HER2/neu receptor status. MiRNAs play regulatory roles in tumor initiation and progression, and altered miRNA expression has been demonstrated in a variety of cancer states presenting the potential for exploitation as cancer biomarkers. Blood provides an excellent medium for biomarker discovery. This study investigated systemic miRNAs differentially expressed in Luminal A-like (ER+PR+HER2/neu-) breast cancer and their effectiveness as oncologic biomarkers in the clinical setting. Methods: Blood samples were prospectively collected from patients with Luminal A-like breast cancer (n=54) and controls (n=56). RNA was extracted, reverse transcribed and subjected to microarray analysis (n=10 Luminal A-like; n=10 Control). Differentially expressed miRNAs were identified by artificial neural network (ANN) data-mining algorithms. Expression of specific miRNAs was validated by RQ-PCR (n=44 Luminal A; n=46 Control) and potential relationships between circulating miRNA levels and clinicopathological features of breast cancer were investigated. Results: Microarray analysis identified 76 differentially expressed miRNAs. ANN revealed 10 miRNAs for further analysis ( miR-19b, miR-29a, miR-93, miR-181a, miR-182, miR-223, miR-301a, miR-423-5p, miR-486-5 and miR-652 ). The biomarker potential of 4 miRNAs ( miR-29a, miR-181a , miR-223 and miR-652 ) was confirmed by RQ-PCR, with significantly reduced expression in blood of women with Luminal A-like breast tumors compared to healthy controls (p=0.001, 0.004, 0.009 and 0.004 respectively). Binary logistic regression confirmed that combination of 3 of these miRNAs ( miR-29a, miR-181a and miR-652 ) could reliably differentiate between cancers and controls with an AUC of 0.80. Conclusion: This study provides insight into the underlying molecular portrait of Luminal A-like breast cancer subtype. From an initial 76 miRNAs, 4 were validated with altered expression in the blood of women with Luminal A-like breast cancer. The expression profiles of these 3 miRNAs, in combination with mammography, has potential to facilitate accurate subtype- specific breast tumor detection

    MicroRNA-375 plays a dual role in prostate carcinogenesis

    Get PDF
    Background: Prostate cancer (PCa), a highly incident and heterogeneous malignancy, mostly affects men from developed countries. Increased knowledge of the biological mechanisms underlying PCa onset and progression are critical for improved clinical management. MicroRNAs (miRNAs) deregulation is common in human cancers, and understanding how it impacts in PCa is of major importance. MiRNAs are mostly downregulated in cancer, although some are overexpressed, playing a critical role in tumor initiation and progression. We aimed to identify miRNAs overexpressed in PCa and subsequently determine its impact in tumorigenesis. Results: MicroRNA expression profiling in primary PCa and morphological normal prostate (MNPT) tissues identified 17 miRNAs significantly overexpressed in PCa. Expression of three miRNAs, not previously associated with PCa, was subsequently assessed in large independent sets of primary tumors, in which miR-182 and miR-375 were validated, but not miR-32. Significantly higher expression levels of miR-375 were depicted in patients with higher Gleason score and more advanced pathological stage, aswellaswithregionallymph nodesmetastases. Forced expression of miR-375 in PC-3 cells, which display the lowest miR-375 levels among PCa cell lines, increased apoptosis and reduced invasion ability and cell viability. Intriguingly, in 22Rv1 cells, which displayed the highest miR-375 expression, knockdown experiments also attenuated the malignant phenotype. Gene ontology analysis implicated miR-375 in several key pathways deregulated in PCa, including cell cycle and cell differentiation. Moreover, CCND2 was identified as putative miR-375 target in PCa, confirmed by luciferase assay. Conclusions: A dual role for miR-375 in prostate cancer progression is suggested, highlighting the importance of cellular context on microRNA targeting.Research Center of Portuguese Oncology Institute - Porto (CI-IPOP 4–2012) and by the Federal funds through Programa Operacional Temático Factores de Competitividade (COMPETE) with co-participation from the European Community Fund (FEDER) and by the National funds through Fundação para a Ciência e Tecnología (FCT) under the projects EXPL/BIM-ONC/0556/2012. FQV and JRC were or are supported by FCT-Fundação para a Ciência e a Tecnologia grants (SFRH/BD/70564/2010 and SFRH/BD/71293/2010, respectively)

    miRpower: a web-tool to validate survival-associated miRNAs utilizing expression data from 2178 breast cancer patients

    Get PDF
    PURPOSE: The proper validation of prognostic biomarkers is an important clinical issue in breast cancer research. MicroRNAs (miRNAs) have emerged as a new class of promising breast cancer biomarkers. In the present work, we developed an integrated online bioinformatic tool to validate the prognostic relevance of miRNAs in breast cancer. METHODS: A database was set up by searching the GEO, EGA, TCGA, and PubMed repositories to identify datasets with published miRNA expression and clinical data. Kaplan-Meier survival analysis was performed to validate the prognostic value of a set of 41 previously published survival-associated miRNAs. RESULTS: All together 2178 samples from four independent datasets were integrated into the system including the expression of 1052 distinct human miRNAs. In addition, the web-tool allows for the selection of patients, which can be filtered by receptors status, lymph node involvement, histological grade, and treatments. The complete analysis tool can be accessed online at: www.kmplot.com/mirpower . We used this tool to analyze a large number of deregulated miRNAs associated with breast cancer features and outcome, and confirmed the prognostic value of 26 miRNAs. A significant correlation in three out of four datasets was validated only for miR-29c and miR-101. CONCLUSIONS: In summary, we established an integrated platform capable to mine all available miRNA data to perform a survival analysis for the identification and validation of prognostic miRNA markers in breast cancer

    Estrogen-dependent dynamic profile of eNOS-DNA associations in prostate cancer

    Get PDF
    In previous work we have documented the nuclear translocation of endothelial NOS (eNOS) and its participation in combinatorial complexes with Estrogen Receptor Beta (ERβ) and Hypoxia Inducible Factors (HIFs) that determine localized chromatin remodeling in response to estrogen (E2) and hypoxia stimuli, resulting in transcriptional regulation of genes associated with adverse prognosis in prostate cancer (PCa). To explore the role of nuclear eNOS in the acquisition of aggressive phenotype in PCa, we performed ChIP-Sequencing on chromatin-associated eNOS from cells from a primary tumor with poor outcome and from metastatic LNCaP cells. We found that: 1. the eNOS-bound regions (peaks) are widely distributed across the genome encompassing multiple transcription factors binding sites, including Estrogen Response Elements. 2. E2 increased the number of peaks, indicating hormone-dependent eNOS re-localization. 3. Peak distribution was similar with/without E2 with ≈ 55% of them in extragenic DNA regions and an intriguing involvement of the 5′ domain of several miRs deregulated in PCa. Numerous potentially novel eNOS-targeted genes have been identified suggesting that eNOS participates in the regulation of large gene sets. The parallel finding of downregulation of a cluster of miRs, including miR-34a, in PCa cells associated with poor outcome led us to unveil a molecular link between eNOS and SIRT1, an epigenetic regulator of aging and tumorigenicity, negatively regulated by miR-34a and in turn activating eNOS. E2 potentiates miR-34a downregulation thus enhancing SIRT1 expression, depicting a novel eNOS/SIRT1 interplay fine-tuned by E2-activated ER signaling, and suggesting that eNOS may play an important role in aggressive PCa

    Identification and Pathway Analysis of microRNAs with No Previous Involvement in Breast Cancer

    Get PDF
    microRNA expression signatures can differentiate normal and breast cancer tissues and can define specific clinico-pathological phenotypes in breast tumors. In order to further evaluate the microRNA expression profile in breast cancer, we analyzed the expression of 667 microRNAs in 29 tumors and 21 adjacent normal tissues using TaqMan Low-density arrays. 130 miRNAs showed significant differential expression (adjusted P value = 0.05, Fold Change = 2) in breast tumors compared to the normal adjacent tissue. Importantly, the role of 43 of these microRNAs has not been previously reported in breast cancer, including several evolutionary conserved microRNA*, showing similar expression rates to that of their corresponding leading strand. The expression of 14 microRNAs was replicated in an independent set of 55 tumors. Bioinformatic analysis of mRNA targets of the altered miRNAs, identified oncogenes like ERBB2, YY1, several MAP kinases, and known tumor-suppressors like FOXA1 and SMAD4. Pathway analysis identified that some biological process which are important in breast carcinogenesis are affected by the altered microRNA expression, including signaling through MAP kinases and TP53 pathways, as well as biological processes like cell death and communication, focal adhesion and ERBB2-ERBB3 signaling. Our data identified the altered expression of several microRNAs whose aberrant expression might have an important impact on cancer-related cellular pathways and whose role in breast cancer has not been previously described

    MicroRNA Expression Variability in Human Cervical Tissues

    Get PDF
    MicroRNAs (miRNAs) are short (∼22 nt) non-coding regulatory RNAs that control gene expression at the post-transcriptional level. Deregulation of miRNA expression has been discovered in a wide variety of tumours and it is now clear that they contribute to cancer development and progression. Cervical cancer is one of the most common cancers in women worldwide and there is a strong need for a non-invasive, fast and efficient method to diagnose the disease. We investigated miRNA expression profiles in cervical cancer using a microarray platform containing probes for mature miRNAs. We have evaluated miRNA expression profiles of a heterogeneous set of cervical tissues from 25 different patients. This set included 19 normal cervical tissues, 4 squamous cell carcinoma, 5 high-grade squamous intraepithelial lesion (HSIL) and 9 low-grade squamous intraepithelial lesion (LSIL) samples. We observed high variability in miRNA expression especially among normal cervical samples, which prevented us from obtaining a unique miRNA expression signature for this tumour type. However, deregulated miRNAs were identified in malignant and pre-malignant cervical tissues after tackling the high expression variability observed. We were also able to identify putative target genes of relevant candidate miRNAs. Our results show that miRNA expression shows natural variability among human samples, which complicates miRNA data profiling analysis. However, such expression noise can be filtered and does not prevent the identification of deregulated miRNAs that play a role in the malignant transformation of cervical squamous cells. Deregulated miRNAs highlight new candidate gene targets allowing for a better understanding of the molecular mechanism underlying the development of this tumour type
    corecore